$3 \times 3 x 1$ cube: Notation

Version 1. Updated on $23^{\text {rd }}$ July 2016.

The $3 \times 3 \times 1$ is a cuboid, called Floppy Cube, and is based on a $3 \times 3 \times 3$ cube. The axis is fixed, so the centres (and therefore the faces) are defined. In this type of cuboids the moves are always 180 degrees.

Faces

The faces are the surfaces with several stickers. Floppies have 6 faces, two of which have 9 stickers and the rest have three stickers each. In this guide the F face will be one three-stickers face and the algorithms are based on that.

Figure 1: English notation for the faces.

Pieces

In the Floppy cube there are three types of pieces: Centres, Edges and Corners.

Unlike a $3 \times 3 \times 3$ cube, in this case there are only 2 centre pieces, with one sticker each. They are located in the 9-sticker faces, called U and D.

They are different from the $3 \times 3 \times 3$ edge pieces, since in this case each edge has 3 stickers.

They are different from the $3 \times 3 \times 3$ corner pieces, since in this case each corner has 4 stickers.

Matrix notation

In this cuboid matrix notation is very useful because the pieces are different. We have to name the pieces with their row and column. We will write (x, y), where x indicates rows and y indicates columns.

Turns

Turns are the moves the pieces make. In the $3 \times 3 \times 1$ the only possible turns are double (180 degrees). Since there are some Floppy models (the Super Floppy Cube) that can turn 90° without blocking the cuboid, we will still write the letters with a number 2 (i.e., F2, R2, L2, etc.) to indicate the move.

This guide and much more at:

www.iberorubik.com

